For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software

Introduction

CSCI E 45a: The Cyber World — part A

Copyright ©Scott Bradner & Ben Gaucherin 2015 1

Learninggoals

¢ Understand the processand
— tools involved in making

e

O simple software
o * Understandthe

environment within which
software is run, and the key

elements of running
software

* Understand how one could
abuse software to subvert it

Copyright ©Scott Bracher & Ben Gaucherin 2015 2

* Runningsoftware -R
Operating systems, and the basic

structural elements of running
software

* Makingsimple software -R

Introduction to programming in a
handful of slides

* The evolution of
programminglanguages-R
The landscape of programming

languages

Copyright © Scott Bradner & Ben Gaucherin 2015 3

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

* The craft of making software
-R

Going from Sunday afternoon
coder to professional software
engineer

¢ Unintended ways to use
software -R

What can you do if you use
software in ways the people who

made it did not expect

Copyright ©Scott Bradner & Ben Gaucherin 2015 4

 Artificial Intelligence -R

Anew twist on algorithms, data

and programs exhibiting
“apparent intelligence”

Copyright ©Scott Bracher & Ben Gaucherin 2015 5

Image credits

Al drawings and photos by Ben Gaucherin unless noted
Side# credit
3

http://blogs.screenconnect.com/image.axd ?picture=linux
-mac-windows.png
3 1983 CPA 5426 (1)" by Unknown -
http: //www. musimheritage. com /to pics /defau lt.cfm?ArticlelD=631, [1].

Licensed under Public Domain via Commons -
https://commons. wikimedia. org/w iki /File:1983_ CPA_5 426_(1). png #/me dia
[File:1983_CPA_5426_(1).png

4 “Swanson Shoe Repair 18" by Joe Mabel. Licensed under CC BY
SA3.0via Commons -

https://commons. wikimedia. org/w iki /File:Swans on_Sh oe_Re pair _18.jog #/
media/File: Swanson_Shoe_Repa ir_18.jpg

4 ClA logo

5 The official seal for the Algorithmic Warfare CrossFunctional

Team -
https://imgix. bustle.com/inverse/ 73/9e /19 /2d /a025 /42ba /a81e /735e 7ff30

d6f/the-official-seal-for-the-algor ithmic- warfare-cros s-functiona -team-

aka-project-

maven. png?w=710&h=7528& & %6 &q=508dp 6
r=2

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Image credits

All drawings and photos by Ben Gaucherin unless noted
slide# credit

5 The official seal for the Algorithmic Warfare CrossFunctional
Team -

https://imgix. bustle.com/inverse/ 73/9e /19 /2d /a025 /42ba /a81e /735e 730
d6f/the-official-seal-for-the-algor ithmic- warfare-cross-functiona Fteam-
aka-project-

maven. png?w=710&h=752&fit=max&auto=format %2Ccomp res s&q= 50&d p

r=2

Copyright © Scott Bradner & Ben G aucherin 2015 7

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software

Runningsoftware

CSCI E 45a: The Cyber World — part A

1 Copyright ©Scott Bradner & Ben Gaucherin 2015

Operating systems

¢ Environment for running
software

e Userinterface
Command line, menus, Graphical

User Interface (GUI)
* Hardware drivers

Memory, storage, video, etc.
¢ Services

e Utilities

2 Copyright © Scott Bradner & Ben Gaucherin 2015

Historical highlights

* IBM’s 0S/360
* DEC’s TOPS 10

* Xerox Alto OS

¢ DEC’s VMS
* UNIX(es)

System Ill, BSD, System V, Solaris
* UCLA’s LOCUS

 Digital Research’s CP/M
* Microsoft’s DOS

3 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Historical highlights, contd.

K - 1BMs05/2
- MacOS« Original Apple Mac OS

* Microsoft’s Windows

A Ny

3 4 ay

R A * More UNIX(es)

O £y = NeXTs NeXTSTEP
Linux

B Apple’s Mac OS X and iOS

Google’s Android

o

4 Copyright ©Scott Bradner & Ben Gaucherin 2015

Operating system userinterface

¢ Command line
Still the most flexible

* Menu
* Touch/pen

‘ * Graphical User Interfaces
(GUIs)

i * Multi-touch
* Gesture

e Brain controlled

5 Copyright © Scott Bradner & Ben Gaucherin 2015

Operating systemservices

e Service -Software that runs
in the background and

performs utility functions
e.g. print spooler/manager

* Typically comes with toolsto
manage the service

e Oftenincludes a
programmatic interface to

the service, an Application
Programming Interface (API)

6 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Operating system services, contd.

* Example services:
Task management, scheduler

Memory management
Device management

File system
Print

Graphics/Video, Audio
Security
Networking

Etc.

7 Copyright ©Scott Bradner & Ben Gaucherin 2015

Operating system task management

* Manages processes
Chunks of code to be run

Loading/Unloading,
Starting/Stopping

* Single taskvs. Multi-task
* Multi-task: Cooperative vs.

Pre-emptive
Tragedy of the commons

8 Copyright © Scott Bradner & Ben Gaucherin 2015

Process

* Top level chunk of self-
contained, run-able

software in “memory”
» Creatingprocesses

Running an executable file

Operating systems primitives

(e.g. Fork, Exec in UNIX)
* Operating systems provide

facilities for processes to
“talk” to each other

9 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Process, contd.

* Process hierarchy:
Process ID (PID) and their Parent

PID (PPID) - what started this
process

Starting with the “init task” of an

operating system
eg. PID1on OSXis launchd

* Zombie/orphan processes

10 Copyright ©Scott Bradner & Ben Gaucherin 2015

Callstackandheap

e Callstack

As functions are called,

information about the function
call is pushed on astack

When afunction has completed,

it returns control to the caller of
the function and it gets popped

off the stack
¢ Heap

The memory space within which
non-stack variables are allocated

11 Copyright © Scott Bradner & Ben Gaucherin 2015

Threads

¢ Concurrency within a
process

e Threads each havetheir
own call stack

* Threads share the process
heap

12 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The impactof resource glut

* Software developers used to
have to worry about:

Limited resources: memory,
mErmmecnan
POrCranEes storage, etc.

PEmmEAREES

Time costly operations: disk
writes, etc.
Code optimization

e But with resource glut, we
don’t need to be as careful...

13 Copyright ©Scott Bradner & Ben Gaucherin 2015

The impactof resource glut, contd.

e ..ordowe?

Portable/mobile devices, other

resource constrained devices
(storage, processing, battery
power, etc.)

Remember that technology
continues to change

. e.g., WAP is no longer needed
§ AL

14 Copyright © Scott Bradner & Ben Gaucherin 2015

Image credits

Al drawings and photos by Ben Gaucherin unless noted
Side# credit

2 http://blogs. c i picture=li
windows. png

3 OpenVMS, MS DOS logos

3 AT&T System V https://covers.openlibrary. org/b/id /660 4025~
M.jog

4 05/2, Windows, NeXT, Android, Mac OS,

4 "Tux" by lewing@isc.tamu.edu and The GIMP. Licensed under

Attribution via Wikimedia Commons -
https://commons. wikimedia. org/w iki /File: Tux. png#/med ia/F ile: Tux. png

5 "Apple Unix with Netscape” by Takenby me on aQuadra 650
running A/UX 3.0.1..Via Wikipedia -

https://en. wikipedia. org/wik i/F ile: Apple_Un ix_with_Net scape.jpg# /med ia/
File: Apple_Unix_with_Net scape. jog

5 "Linux command-ine. Bash. GNOME Terminal. screenshot” by
ZxxZxxZ - Own work. Licensed under GPL via Commons -
https://commons. wikimedia. org/w iki /File: Linux_comman d-

line._Bash._GNOME_Terminal._scree nsh ot. png# /media /File:Linux_comma
nd-line._Bash._GNOME_Termina I. _screen shot.png

15 Copyright © Scott Bradner & Ben G aucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Image credits

All drawings and photos by Ben Gaucherin unless noted
Sidett credit
8 Multitasking ~https:/flic.kr/p/7MuTo?

1 "Call stack layout" by R.S.Shaw (R. S. Shaw)-Own work.
Licensed under Public Domain via Commons -
https://commons.wikimedia. org/w iki /File: Cal |_stack_layo ut.svg#/me dia/F il
e:Call_stack_layout.svg

12 “spool of white thread" by No machine readable author
provided. Dmeranda assumed (based on copyright claims). - No machine
readable source provided. Own work assumed (based on copyright claims)..
Licensed under CC BY-SA 3.0 via Commons -

https://commons, wikimedia. org/w iki /File:Spoo |_of_white_threa d.jpg# /me
dia/File:Spool_of_white_t hread.jpg

16 Copyright © Scott Bradner & Ben G aucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software

Making simple software

CSCIE 45a: The Cyber World—part A

1 Copyright ©Scott Bradner & Ben Gaucherin 2015

“Problem solving is an art form not fully appreciated by some”

Q) Lo) (e WS Uz
J ‘ r I
AN e

£

As proposed by As specified in As designed by i

the project sponsors the profject request the senior analyst ¢

. ;_ i

L 1"‘}?{ ¢ e i

==

¥

L i

"7’Q — H

As producrd by As mslrl”(d at What the user ~ *
the programimers the user’s site wanted

2 Copyright © Scott Bradner & ben Gauchern 2015

Simplesoftware

e —
= 1+ Self-contained application/utility
* Single executable file or script

* Single process

hlsadmins-MacBook:~ jasper$./my_program
Hello World!

hlsadmins-MacBook:~ jasper$ [

et 1

3 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

€0 08 FUSH @ [l %
ES S5C60EDE | CALL CJNP, 4KERNEL 32, Get LKERNEL i
G G, B %
EB C6E2E006 | CALL BRAOFZF4 i]
1401 BZE P 9812FFCE -
401 BZF ES 24E2D2@ | CALL GR4DF2SS P BB1ZFFFR
ES FEEZD0G | CALL 0R40F334 Collydk 1 GBABABAS
FALL Anepzass ciiad L ey
ally
T <7 99481838 o l1ydh
@ ES oe23
1 CE BE1B
@ 55 ge23
Z 1 05 oez3
5@ F: e azhic
1a &
fdd

a5,
0612FFES| FEFFFFFE| =

1ol x|
TroDeoEs [Modu Le CrWIN

ool HE6_ITLerosof T, I indows. L *Eor\vrols,ES?Sbst
BAda1 500 | Entry polnt of main module

DedaLEsE | INTE: EAR

EBR = PFFOARGE (2147320900,)
UORO®a ESP1 = @, 7L

i =6, 7Calendt, 8, B
AA4081A2E | Breakpoint at ol lydbg. B840163E fict
| | a7
4 Copyright © Scott Bradner & Ben Gaucherin 2014
Programming languages
¢ Asimplified taxonomy:
Compiled languages
Functional languages
Object oriented languages
Visual programming languages
Interpreted languages/scripts
Functional languages
Object oriented languages
5 Copyright © Scott Bradner & Ben Gaucherin 2015
Making software

The compiled languages version

Write source code usinga
programminglanguage

* Compile to object code

e Linkintoa binary executable

* Run binary executable

Examples:
Assembly language, C, C++,

Pascal, Java*, c#*

* Compiles to an intermediate language,

NOT object code

Copyright ©Scott Bracher & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Compilation

[principies of Compiter Design © Tra ns|atingfrom one
language into another

Specifically, takes source code
and turns it into object code (or
intermediate language)

Lexical, syntactic, and semantic
analyses

3

* Rooted in linguistics work
e Syntactic Structures
Noam Chomsky (1956)

Alfred Y. Abo)
Jeteey D Uil
: pe

Principles of compiler design
Aho/Ullman (1977)

7 Copyright ©Scott Bradner & Ben Gaucherin 2015

Libraries

* Packages of objectsor
functions to be used by

developers
* Two primary types of

libraries

Static libraries — content of the
library is included in the

resulting executable
Dynamic libraries — the

executable is given a reference
to an outside library that is

loaded at runtime

Copyright ©Scott Bradner & Ben Gaucherin 2015

Linking

e Linkingdoes two things:
“Glues” together individual

chunks of object code

Some of the “chunks” can
be static libraries or

references to dynamic
libraries

Sets up startup code for the
operating system

9 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The finished product

48 8d 3d 37 00 00 00 b0 IUH..H.
89 45 fc 89 c8 48 83 c4 |

8d 1d 95
00 00
6

£y

00 00
00 00
of 0o

00
00 00
]

N
3

4c
68
57
00
02
64
oc
00
o1
20
00
00
00

s83ss=8888878K

00 00
00 00
00 00
00 00

10 Copyright ©Scott Bradner & Ben Gaucherin 2015

Making software

The interpreted languages version

* Write source code/script

* Aninterpreterisusedto

interpret/run the script
Examples:

Shell script, Perl, PHP, Ruby,
Python, JavaScript

“Slower” because of

interpretation

Can be run in “interactive mode”

11 Copyright ©Scoft Bradner & Ben Gaucherin 2015

An importantscripting language - BASIC

* Beginner's All-purpose
Symbolic Instruction Code
BASIC

Making programming
accessible to everyone

* 1964 Dartmouth College
Kemeny/Kurtz

Enable students (not just in math
or science curriculums) to use
computers

* Microsoft’s initial focus

12 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Runtimes, interpreters

e Abstractingthe OS
making the differences between

OS'es invisible to the running
code

* Portable code —write once,
run many

* Runtime engine (or player)
runs anintermediate

language
e.g., JVM for Java, CLR for .NET,
Flash player for Adobe Flash

13 Copyright ©Scott Bradner & Ben Gaucherin 2015

Coresyntacticelements

* Variables
scalar and structures

i=5, j={name: Bob,
id:1234}

Variables can be typed: strings,
numbers, date/time

* Operators

General and type specific
str3 = strcat(strl, str2)

now ()

14 Copyright © Scott Bradner & Ben Gaucherin 2015

Coresyntacticelements

* Logic operators
&, |,==1x<, > etc

* Flow control
if...then, for loops, while loops,

etc.
e Error handling

try/throw/catch
e Input/Output (I/0)

print, read, etc.

15 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Core syntacticelements

* Functions/procedures/subro
utines —encapsulating

functionality thatcan be
called from other parts of

the source code

Functions can return values

Functions can take parameters
Int function
add_two_numbers (int a,

int b)

16 Copyright ©Scott Bradner & Ben Gaucherin 2015

Image credits

Al drawings and photos by Ben Gaucherin unless noted
Side# credit
2 Tree swing

http://www. businessba lls. com/image s/tre eswing /tree- swing-s- hogh.jpg

3 Bill Amend FoxTrot http://mattdturner.com/wordpre ss /wp-
content/uploads/2011/04 /pu it ion is8. jpg

4 http://www. ollydbg. de/Pics/m ult log. gif

7 "Green DragonBook (front)" by Source (WP:NFCC#4). Licensed

under Fairuse via Wikipedia -
https: //en. wikipedia. org/wik i/F ile:Green_Dragon_Book_{(fr ont).jpg# /med a
[File:Green_Dragon_Book_(front). jpg

12 "Altair Basic Sign” by Swtpc6800 en:User:Swtpc6800 Michael
Holley - Swtpc6800 en:User:Swtpc6800 Michael Holley. Licensed under
Public Domain via Commons -

https://commons. wikimedia. org /w ki /File: Alta ir_Basic_Sign.jpg#/me dia/F il
e:Altair_Basic_Sign. jpg

17 Copyright © Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software

The evolutionof programminglanguages

CSCI E 45a: The Cyber World — part A

1 Copyright ©Scott Bradner & Ben Gaucherin 2015

Functional programming languages

* Focused on describingthe
flow of processing

* Allows the implementation
of Algorithms

al-Khwarizmi c. 780 to c. 850
Recipe for solving a given

problem
Helps assess the complexity of a
process - time to process the data

in relation to the siz of data being
processed

2 Copyright ©Scoft Bradner & Ben Gaucherin 2015

Example—SimpleC program

include <stdio.h>

int main(void)
{

int count;

for (count=1; count<=500; count++)

printf ("I will not throw paper
airplanes in class.\n");

return 0;

3 Copyright ©Scott Bradner & Ben Gaucherin 2014

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Object Oriented Design/Languages

* Bringing programming

languages closer to
“real-world” things

Alan Kay’s early history of
Smalltalk
V/ — Marvin Minsky’s Frames

Artificial Intelligence and
knowledge representation

Copyright ©Scott Bradner & Ben Gaucherin 2015

Object Oriented Design/Languages, contd.

* Classes are models for

objects
* Objects are instances of

classes
* Two parts to an object:

Attributes - data
Methods — code for object

behavior

Copyright ©Scott Bradner & Ben Gaucherin 2015

Example—Java

£_birth;

tem.out.println("Hi! My name is "+ name +

println(“My age is * + to_string(now(} -

"\n");

Parson John = new Person():

Copyright ©Scott Bradner & Ben Gaucherin 2014

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

ObjectOrientation—the good stuff

* Encapsulation
You can only see the interface of

an object
Its “innards” are not visible

e.g., inthe Personclass the
calculation to get someone’s age is
embedded in the object — anyone

using this object does not know
how the calculation is performed,
or whether the ageis stored or
calculated

7 Copyright ©Scott Bradner & Ben Gaucherin 2015

Object Orientation—the good stuff, contd.

* Inheritance
Allows a class to take on the

shared characteristics of
another class (parent class),

and to modify/add to them

e.g., if we had a base Shape class
that captures basic behaviors of

geometric figures; we could have
the following classes inherit from
this parent class: Square,

Circle, Triangle

8 Copyright © Scott Bradner & Ben Gaucherin 2015

Object Orientation—the good stuff, contd.

* Polymorphism
The ability for code to act on

objects of multiple types

e.g., Ifour Shape class hada
color attribute anda method

set_color (a_color) to
change the color of a shape -we
could call set_coloron

Squares, Circles, and
Triangles

9 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Object design patterns

* General, reusable solutions
to common problems

E.g.: facade, delegation, factory,
singleton, etc.

* Model View Controller

Model —the core
domain/business logic

View — thevisualization of the
Model

Controller — routes requests to

View/Model

10 Copyright ©Scott Bradner & Ben Gaucherin 2015

Visual/Event based programming

e Build a graphical user
interface

* Associate actionsto events
eg. buttonl_click() { <do

something> }

* Eventloop runs constantly

to handle events asthey
come up

Events queue up in an “event
queue”

11 Copyright © Scott Bradner & Ben Gaucherin 2015

HyperCard/HyperTalk

* Started by Bill Atkinson in
1985

¢ HyperTalkadded by
Dan Winklerin 1986

* Released by Apple asfree
software on Mac OSin 1987

* Programming for the people
Easy visual interface design

English-like scripting

12 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Microsoft Visual Basic

soft . |Initially created by Alan
Cooper and his team at

Tripod
e Firstreleased at COMDEX

May 1991
* Visual programmingin

Windows (and DOS)
* First enterprise grade visual

programming language

13 Copyright ©Scott Bradner & Ben Gaucherin 2015

Scripting the Web

* Serverside scripting:
Perl, PHP, Python, Ruby,

JavaScript
* Serverside frameworks*:
Ruby on Rails (RoR), Django, lots

of PHP MVC frameworks
» Clientsidescripting:

JavaScript
* Clientside frameworks*:
JQuery, Dojo, etc.

collection of code, tools, designs to serve as
foundation for building more complex structures

14 Copyright © Scott Bradner & Ben Gaucherin 2015

Image credits

All drawings and photos by Ben Gaucherin unless noted
Side#t credit
2 "1983 CPA 5426 (1)" by Unknown -

http://www. musimheritage. com /to pics /defau t. cfm?Articl elD=631, [1].
Licensed under Public Domain via Commons -
https://commons. wikimedia. org/w iki /File:1983_ CPA_5 426_(1). png #/me dia
[File:1983_CPA_5426_(1). png

4 "Alan Kay (3097597186)" byMarcin Wichary from San Francisco,
U.S.A -Alan Kay. Licensed under CC BY 2.0 via Commons -
https://commons. wikimedia. org/w iki /File:Ala n_Kay_(3097597 186).jpg# /m
edia/File:Alan_Kay_(309759718 6).jog

4 "Marvin Minsky atOLPCb" by Original uploader was
Sethwoodworth at en.wikipedia, taken by Bejordan - Transferred from
en.wikipedia; transferred to Commons by User:Mardetanha using

CommonsHelper.. Licensed under CC BY 3.0via Commons -
https://commons. wikimedia. org/w iki /File:Marvin_M insky_at_OLPCb.jpg#/
media/File:Marvin_Minsky_at_OLP Cb.jpg

10 Gang of four http://gph.s.quoracdn. net/main- gimeg-

04ce4370594c6870fb7d26681676dd3 S?convert_to_web p=true

15 Copyright © Scott Bradner & Ben G aucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Image credits

All drawings and photos by Ben Gaucherin unless noted
slide# credit

10 "Design Patterns cover" by Source. Licensed under Fair use via
Wikipedia -

https://en. wikipedia. org/wik i/F ile:Design_Patte rs_coverjpg# /med ia/F ile:
Design_Patterns_coverjpg

12 Hypercard icon
13 VisualBasic logo
16 Copyight © ScortBradner & Ben G aucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software

The craft of making software

CSCI E 45a: The Cyber World — part A

Copyright ©Scott Bradner & Ben Gauchern 2015

The craft of making software

!+ Alsoreferredto as Software
Engineering

* What goes into making good
software besides coding

* Notas commonly
understood or adhered to as

one would think (or hope)

2 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—Analytical and system thinking

* A wayofsystematicanalysis
that asks, “How canl break

this problem down into its
constituent parts?”

* And conversely, the ability
tounderstand how

individual partscome
togetherinto a coherent
whole

3 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The craft—Software Development Life
Cycle

SDLC - Overall process for
developing software

AN, Old school —“waterfall”

Fully design, then fully develop,

then fully test, then deploy

New school — Agile

Inspired from lean principles
Develop deployable software

in small (e.g. 2 weeks) iterations

Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—SDLC, contd.

* Why waterfall?

Fully understand the scope and
every detail before you start

coding

Thus, think you understand the
level of effort, timeframe, and

budget needed to deliver the
solution

Testing is a focused quality effort

to finish up the project

5 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—SDLC, contd.

* Problems with waterfall

The business’ needs (or

understanding of its needs) may
have changed by the time the
design or development is done

Alarge percentage of the
functionality you design may be
theoretically, but not actually,

useful

Long wait time before you get

anything useful

6 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The craft—SDLC, contd.

* Problems with waterfall

Long phases means the
magnitude (and odds) of slippage
are high

By making “testing” a separate
phase it allows for quality and
design issues to go

undetected/un-addressed for
long periods of time, and be very

disruptive when found

And many more...

7 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—SDLC, contd.

* Why Lean/Agile?

Reduce “waste”

Deliver value quickly and
frequently

“Fail fast and often”
* Not a perfect model either,

but a marked improvement
over waterfall

8 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft- Architecture

* Forsimple and complex
software

* Definingand implementing
the optimal design for the

software needed
Right mix of technologies

Logical structure
Physical structure
Connection points and

dependencies with the rest of
the environment

9 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The craft—Source code control

@ * Keeptrack ofthe changes
github made to the source code

Allow multiple developers to
work together on the same code

base

¢ And whythey were made

(so you canrevert back,
or audit the code)

10 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft- Versioning

* Important tocompare to
similarpieces of software

and know which oneis
newer than the other

* Most versioningsystem use:

<majo r><minor>.<more>

eg 01.23.2014101701
* Minorreleases arealso

referred to as pointreleases

11 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—Coding standards

* Makingthe code
legible/maintainable for

others (and for you)

Naming rules, indentation rules,

source code file structure

Source file headers, comments,
etc.

Embedded documentation

* Helped/enforced by code

reviews and compliance
tools

12 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The craft—Quality Assurance

* Knowingwhatit means to
meet or exceed

expectations

Test Driven Development

* Manysub-categories of
testingto ensure quality

Unit testing
Integration testing
Performance and scalability

testing

Regression testing

13 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—Build & Release

. e Build-Process for
@ Jenkins producingthe finished

Ccruise ~ product
* Release-And movingit

through different
environments

e.g., Dev, Test, Stage,
Production

* Moving increasingly to

automated, continuous
build and release

14 Copyright ©Scott Bradner & Ben Gaucherin 2015

The craft—DevOps

* Looking past the “silicon
snake oil”

Making the bridge between
development and operations
better, and more efficient

Using Agile, automation and
programmable infrastructures

SDN, Cloud laas, etc.
* Many newtools

emerging
Puppet, Ansible, Chef, etc.

15 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

The craft—DevOps

¢ Infrastructureas codev.
Infrastructureas kittens

* Containerization
Packaging and promoting

running software in smaller
packages than a whole machine

* DevOpschallenges

Different mindsets on either side
of the conversation

Separation of duty requirements
can make this harder

16 Copyright ©Scott Bradner & Ben Gaucherin 2015

Codingscience and art

Flight Simulator
Winner of the 1998 10CCC
http://blog.aerojockey. com/post/iocccsim

17
Copieht ©5cot Batner & Ben Gauchrn 2018
Image credits
Al drawings and photos by Ben Gaucherin unless noted
Slide# credit
2 "Swanson Shoe Repair 18" by Joe Mabel. Licensed under CC BY.

SA3.0via Commons -

https://commons. wikimedia. org/w iki /File:Swanson_Sh oe_Re pair _18.jog #/
media/File:Swanson_Shoe_Repa ir_18.jog

4 http://popdigital.ca/wp-content/ upl oads /20 13/0 3/tr iang les. png

10

http://photos3. meetupstatic. com/phot os/eve nt/9 /3/6/7 /600_4
32877735.jpeg
14 Jenkins, CruiseControl ~ logos

18 Copyright © Scott Bradner & Ben G aucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software

Unintended ways to use software

CSCI E 45a: The Cyber World — part A

1 (Copyright ©Scott Bradner & Ben Gaucherin 2015

Compromising software

* Find bugs in the software
Bugs with “useful” negative side-

effects — Zero Days
e.g., the Shellshock Bash bug
Fuzzing: testing by providing

random, un-expected, invalid
input

“The (security) risk in using a
programming language is directly
proportional to the expressiveness of
the language”

Dan Geer: HKS IGA 236M talk 01/13

2 Copyright © Scott Bradner & Ben Gaucherin 2015

Compromising software, contd.

* Patchingexecutables
Inserting nefarious code

Bypassing protection
mechanisms

* Usingbinders/joiners to
“bundle” good and bad
executables

* Patchingdynamic libraries

to change behavior

SONY Rootkits - modify operating

systems libraries and executables

3 Copyright ©Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Compromising software, contd.

e Compromisingthe tools

e.g.,, compromised versions
of compilers can

surreptitiously introduce
KenThompson un-expected code

Copyright ©Scott Bradner & Ben Gaucherin 2015

Buffer overflow

Tl © Buffer® overflow—occurs
”"""{" when more data thana
buffer can hold is written to

the buffer

i The excess data overwrites other
€

But wne‘n 1do 1 data in memory, leading to un-
= g, expected (or expected) results
use Metasploit

This has been a popular means of
inserting/injecting nefarious
codeinto a running process

Buffer: a small area of memory used for temporary storage of data.

Usually used in reading/writing to/from keyboard, disk, network, etc.

Copyright ©Scott Bradner & Ben Gaucherin 2015

Disassembling/Reversing

Reversing: contraction of
Reverse Engineering

Crackme: software built to
practice reversing skills

Disassembling: translate

object code into assembly
code

* Prohibited by many End
User License Agreement

(EULA)

Copyright ©Scott Bracher & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Preventing /detecting compromise

* Keep cryptographic hash of
files

Files - executables, libraries,
scripts, etc.

Jaspers-MacBook-Air

Jaspers-MacBook-Air:~ jasper$ mdS my_program

MDS (my_program) = 3399cd45a6b966666dfIab3e385e480b
Jaspers-MacBook-Air:~ jasper$

* Code signing

Software publisher —Creates
digital signature of the

executable

Software user —Checks that the
digital signatures is valid

7 Copyright ©Scott Bradner & Ben Gaucherin 2015

Beyond tech — ethics and software making

* There’s more to software
making than the technical

aspect of it
* What would you doifyou

were asked to build
technology that...
Serves a purpose that goes

against your personal beliefs
Could be used (today orin the

future) as a tool for oppression

and control
: * Engineers are starting to
et e
revolt
8 Copyright © Scott Bradner & Ben Gaucherin 2015

Image credits

Al drawings and photos by Ben Gaucherin unless noted
Slide# credit
2 "H96566k" by Courtesy of the Naval Surface Warfare Center, Dahlgren,

VA., 1988. - U.S. Naval Historical Center Online Library Photograph NH 96566 -
KN. Licensed under Public Domain via Wikimedia Commons -
https://commons.wikimedia.org/wiki/File:H9656 6k.jpgh/media/File:H9656 6 k jp

8

3 “Cheval deTroie d'aprés le Virgile duVatican" by after the Vergilius Vaticanus -
Internet Archive. Licensed under Public Domain via Wikimedia Commons -
https://commons, wikimedia. org/wiki/File:Cheval_ de_Troie_d% 27apr %C3% A8's_le_Virgile

_du_Vatican. jog#/media/File: Cheval_de_Troie_d%27a pr%C3%A8s_le_Virg ile_d u_Vatican.j

pg
3 SONY logo
4 "Ken n dennis" by Unknown -

http://www. catb. org/~esr/jargon/html /U/Unix.html. ~Licensed under Public Domain via
Wikimedia Commons -
https: //commons. wikimedia. org/wiki/File:Ken_n_den nis.jpg#/med a/File:Ken_n_dennis.jp

g

4 CIA, and Apple Xcode logos

5 “I dor'talways overflow buffers” http://www.quickmeme.com/meme/55ab
9 Copyright © Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Image credits

All drawings and photos by Ben Gaucherin unless noted
slide# credit

6 crackmes.delogo
7 Screenshot by Ben Gaucherin
8 The official seal for the Algorithmic Warfare CrossFunctional Team -

https://imgix. bustle. com/inverse/ 73/9 /19 /2d /a025 /42ba /a8le /735e 7ff30d6f /the-
official-seal-for-the-algorithmic-warfare-cro ss-f unctio nal-team-aka-pr oject-

maven. png?w=710&h=752&fit=max8auto=format %2Ccomp res s&q= 508d pr=2

8 Timnit Gebru -

https://upload.wikimedia. org /w ikipe dia/comm on s/th umb/6/6 d/T imnit_Gebr u_crop.jpg/
440px-Timnit_Gebru_crop.jpg

10 Copyright © Scott Bradner & Ben G aucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Simple software
Conclusion

CSCIE 45a: The Cyber World—part A

Copyright ©Scott Bradner & Ben Gaucherin 2015

Some key points

* Software makinghas
evolved greatly:

To be more accessible to the
masses

To promote reuse

To support a broader set of
technologies, with asmaller set
of tools

To involve more sophisticated
practices to yield better value

and quality

Copyright ©Scott Bradner & Ben Gaucherin 2015

Some key points, contd.

* Securityis a problem
There are limited ways for
software to be made secure (in

the long run)
Many ways to abuse it

There is no “provable” way to
eliminate all bugs

* No one knows ifand how
much you can trust the
“code bits” you run

Copyright ©Scott Bracher & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

For use by students in Harvard Extension School CSCI E-45a only. Do not copy.

Some key points, contd.
* Everyone should learnto
l)I'K_Hle Spl_
of the CS50 code
— The 3 R’s and the C: reading,
w writing, arithmetic, and coding
HARVARD
Extension School
Online and on-campus
computer courses:
4 Copyright © Scott Bradner & Ben Gaucherin 2015

Image credits

All drawings and photos by Ben Gaucherin unless noted
Sidett credit
3 “Cheval deTrole d'aprés le Virgile duVatican" by after the

Vergilus Vaticanus - Internet Archive. Licensed under Public Domain via
Wikimedia Commons -

https://commons. wikimedia. org /wiki/File:Cheval_de_Troie_d%27apr %C3%A
8s_le_Virgile_du_Vatican. jpg#/med ia/File:Cheval_de_Troie_d%27apr %C3 %A
8s_le_Virgile_du_Vatican. jog

4 CS50 fair fair.cs50. net

5 Copyright © Scott Bradner & Ben Gaucherin 2015

© 2016 Scott Bradner & Ben Gaucherin. All rights reserved.

	e45a_m05-t00-intro
	Slide 1: Simple software Introduction
	Slide 2: Learning goals
	Slide 3: Topics
	Slide 4: Topics
	Slide 5: Topics
	Slide 6: Image credits
	Slide 7: Image credits

	e45a_m05-t01-Running software
	Slide 1: Simple software Running software
	Slide 2: Operating systems
	Slide 3: Historical highlights
	Slide 4: Historical highlights, contd.
	Slide 5: Operating system user interface
	Slide 6: Operating system services
	Slide 7: Operating system services, contd.
	Slide 8: Operating system task management
	Slide 9: Process
	Slide 10: Process, contd.
	Slide 11: Call stack and heap
	Slide 12: Threads
	Slide 13: The impact of resource glut
	Slide 14: The impact of resource glut, contd.
	Slide 15: Image credits
	Slide 16: Image credits

	e45a_m05-t02-Making simple software
	Slide 1: Simple software Making simple software
	Slide 2
	Slide 3: Simple software
	Slide 4
	Slide 5: Programming languages
	Slide 6: Making software The compiled languages version
	Slide 7: Compilation
	Slide 8: Libraries
	Slide 9: Linking
	Slide 10: The finished product
	Slide 11: Making software The interpreted languages version
	Slide 12: An important scripting language - BASIC
	Slide 13: Runtimes, interpreters
	Slide 14: Core syntactic elements
	Slide 15: Core syntactic elements
	Slide 16: Core syntactic elements
	Slide 17: Image credits

	e45a_m05-t03-The evolution of programming languages
	Slide 1: Simple software The evolution of programming languages
	Slide 2: Functional programming languages
	Slide 3: Example – Simple C program
	Slide 4: Object Oriented Design/Languages
	Slide 5: Object Oriented Design/Languages, contd.
	Slide 6: Example – Java
	Slide 7: Object Orientation – the good stuff
	Slide 8: Object Orientation – the good stuff, contd.
	Slide 9: Object Orientation – the good stuff, contd.
	Slide 10: Object design patterns
	Slide 11: Visual/Event based programming
	Slide 12: HyperCard/HyperTalk
	Slide 13: Microsoft Visual Basic
	Slide 14: Scripting the Web
	Slide 15: Image credits
	Slide 16: Image credits

	e45a_m05-t04-The craft of making software
	Slide 1: Simple software The craft of making software
	Slide 2: The craft of making software
	Slide 3: The craft – Analytical and system thinking
	Slide 4: The craft – Software Development Life Cycle
	Slide 5: The craft – SDLC, contd.
	Slide 6: The craft – SDLC, contd.
	Slide 7: The craft – SDLC, contd.
	Slide 8: The craft – SDLC, contd.
	Slide 9: The craft - Architecture
	Slide 10: The craft – Source code control
	Slide 11: The craft - Versioning
	Slide 12: The craft – Coding standards
	Slide 13: The craft – Quality Assurance
	Slide 14: The craft – Build & Release
	Slide 15: The craft – DevOps
	Slide 16: The craft – DevOps
	Slide 17
	Slide 18: Image credits

	e45a_m05-t05-Unintended ways to use software
	Slide 1: Simple software Unintended ways to use software
	Slide 2: Compromising software
	Slide 3: Compromising software, contd.
	Slide 4: Compromising software, contd.
	Slide 5: Buffer overflow
	Slide 6: Disassembling/Reversing
	Slide 7: Preventing /detecting compromise
	Slide 8: Beyond tech – ethics and software making
	Slide 9: Image credits
	Slide 10: Image credits

	e45a_m05-t06-Conclusion
	Slide 1: Simple software Conclusion
	Slide 2: Some key points
	Slide 3: Some key points, contd.
	Slide 4: Some key points, contd.
	Slide 5: Image credits

