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Abstract

Network fragmentation occurs when the accessibility of a
network-based resource to an observer is a function of how
the observer is connected to the network. In the context of
the Internet, network fragmentation is well-known and occurs
in many situations, including an increasing preponderance of
network address translation, firewalls, and virtual private net-
works. Recently, however, new threats to Internet consistency
have received media attention. Alternative namespaces have
emerged as the result of formal objections to the process
by which Internet names and addresses are provisioned. In
addition, various governments and service providers around
the world have deployed network technology that (accidentally
or intentionally) restricts access to certain Internet content.
Combined with the aforementioned sources of fragmentation,
these new concerns provide ample motivation for a network
that allows users the ability to specify not only the network
location of Internet resources they want to view but also the
perspectivesfrom which they want to view them. Our vision of
aPerspective Access Networkis a peer-to-peer overlay network
that incorporates routing and directory services that allow non-
hierarchical organization. In this paper, we present the design,
implementation, and evaluation of a directory service for such
networks. We demonstrate its feasibility and efficacy using
measurements from a test deployment using PlanetLab.

I. I NTRODUCTION

Network fragmentation occurs when the availability of a
resource to an observer is a function of how the observer
is connected to the network. In the context of the Internet,
network fragmentation is well-known and occurs in many
situations, including an increasing preponderance of network
address translation, firewalls, and virtual private networks.

Recently, however, new threats to Internet consistency have
received media attention. First, a number of nations have raised
formal objections to US oversight of ICANN, the organization
responsible for provisioning Internet names and addresses1,
and a number of private organizations such as UnifiedRoot
have emerged to offer alternative namespaces [22]. Global
agreement on Internet governance is becoming increasingly
difficult [33] which means the potential for inconsistency in
naming resulting from multiple DNS roots or addresses that
are not globally unique will only increase. Second, a perceived
increase in online criminal activity has created viable business

1Internet Corporation for Assigned Names and Numbers,http://www.
icann.org/

models for businesses that provide geolocation services mar-
keted for their benefits in fraud resolution and digital rights
management2. For example, a number of companies use these
geolocation services to obtain information about how a user
is connected to the Internet (such as IP address and ISP data)
to determine whether the user is likely to be fraudulent. This
has caused a number of legitimate online transactions to be
denied when users are not connected at their usual point
of attachment [15]. Finally, various governments and service
providers around the world have deployed network technology
that (accidentally or intentionally) restricts access to certain
Internet content [20], [12].

Combined with the aforementioned sources of fragmen-
tation, these new concerns provide ample motivation for a
network that would allow users the ability to specify not
only the network location of Internet resources they want to
view but also theperspectivesfrom which they want to view
them. In this paper, we present the design, implementation, and
evaluation of aPerspective Access Network, an overlay infras-
tructure for sharing perspectives. Our prototype, called PAN
consists of an unstructured, peer-to-peer overlay offorwarders
carrying TCP traffic that act as intermediaries between nodes
that cannot communicate directly.

Previous work on overcoming network fragmentation to
facilitate end-to-end connectivity requires extensive changes
to operating systems (such as deployment of new protocol
stacks), requires the explicit participation of ISPs and content
providers, or imposes a global hierarchical organization of
the Internet. We relax these constraints to provideease of
deploymentand have built a system we have deployed on
the Tor anonymity network [8] and on PlanetLab [13]. Our
approach does not require changes to the operating system or
protocol stack, does not require active participation of ISPs,
and does not require special configuration of in-band network-
layer elements such as routers or middleboxes.

PAN also does not impose global hierarchical organization
of the Internet. Currently, both the addresses and the names
used to identify resources on the Internet are allocated by
a collection of governance organizations that are arranged
hierarchically with a single organization at the top having
overall “control.” Our approach allows for an Internet with-
out hierarchically ordained names and address spaces—that
is, an Internet consisting of (possibly overlapping) network
fragments, each with its own local naming and addressing
scheme. This scheme promoteslocality in naming, in that

2CyberSource,http://www.cybersource.com/; NatGeohttp://www.
natgeo.com/; Quova,http://www.quova.com/
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multiple resources with the same name can co-exist in different
local namespaces (fragments). This scheme also promotesdis-
tributed managementof local networks, in that adding a new
local network and its abundance of resources to the Internet
need not require specific allocation of names, addresses, or
routing from centralized authorities.

For our overlay, we assume that each forwarder need only
have the ability to communicate bidirectionally with some
subset of the other forwarders. A PAN client that wishes to
view a resource from the perspective of a particular forwarder
F uses the PAN distributed directory service (provided, in our
prototype, by a subset of the forwarders) to determine a path
of connectivity through the forwarders toF. The PAN client
then constructs a source-routed circuit through the forwarders
on the path toF, which then performs a DNS lookup to resolve
the local resource name to an IP address from its point of view
and accesses the resource on behalf of the client. The client
therefore accesses the resource from the perspective ofF.

Since we do not impose a global unique naming scheme
for resources, we need a way to uniquely identify a resource.
We therefore require forwarders to generate unique, self-
certifying identifiers and a PAN client specifies a particular
resource by concatenating the forwarder ID with the resource
name as resolved the forwarder. This design choice, however,
sacrifices a certain amount of aggregation we can perform
when advertising forwarder route information within the PAN
overlay.

Fig. 1. PERSPECTIVE ACCESS NETWORK OVERVIEW. PAN presents a
peer-to-peer network for sharing perspectives, allowing access to resources
in circumstances in which the meaning of names and addresses is a function
of their context.

This paper focuses on the directory service that enables
perspective-sharing in PAN. After comparison with previous
work (Section II), we describe the design and implementation
of our directory service (Section III). We provide an analysis
and evaluation of the service through measurements from
a deployment of PAN nodes using PlanetLab. In particular,
we explore the tradeoffs that arise as a result of our non-
hierarchical design choice, particularly the fact that the extent
to which we can take advantage of aggregation is limited
(Section IV). Finally we conclude with a brief discussion
of future work considering policy issues involved in the
deployment of PAN (Section V).

II. RELATED WORK

A number of existing projects that focus on overcoming In-
ternet fragmentation propose their own directory management
schemes. These projects include:

• INDIRECTION. I3 [26] provides a “rendezvous-based
communication abstraction” in which providers of ser-
vices register with a particular location in the network,
and those peers requesting services communicate with
that location rather than with the provider directly.
TRIAD [2] uses globally unique, hierarchical names to
identify networks; these names are propagated throughout
the system via BGP-like advertisements among TRIAD
nodes. PAN does not require registration of services,
names of resources need not be globally unique, and
names of PAN forwarders are non-hierarchical.

• ANTI-CENSORSHIP. Psiphon is a single proxy applica-
tion used to circumvent content filtering. A host within
a country without filtering installs the Psiphon proxy
software and remote hosts in countries with filtering can
access blocked web sites through the proxy. Infranet [10]
and Tor [8] use overlay networks to provide anonymous
communication. Anonymity networks such as these can
also be used for anti-censorship purposes, specifically
to circumvent local restrictions on access to resources.
However, since the Internet is not entirely flat, the re-
sources to which a user of these networks (or of Psiphon)
has access may vary as a function of the particular
overlay node (or Psiphon host) that is used as the last-
hop proxy. For example, requesting a particular web
page from an anonymity network might yield content
that has been tailored to the particular local network or
geographic region in which the last-hop proxy resides. If
anonymity is the goal, then a larger anonymity set may be
worth the cost of some probabilistic variation in content
reachability. PAN takes the opposite approach, choosing
to use an overlay proxy network to maximize content
reachability, possibly at the expense of anonymity.

• DECOUPLING POLICY FROM MECHANISM. FARA [3],
[4] provides a general framework for describing associa-
tions between nodes without requiring a global names-
pace. Platypus [24] provides a system for enforcing
routing policy on the forwarding plane rather than the
control plane, relying upon cooperation from intermediary
ISPs. PAN aims not to require such cooperation, at least
not on a technical level. However, PAN does present
an argument for separating network access policy from
technical decisions made at the network layer. If two
PAN forwarders are both connected to the same PAN
overlay, then technically speaking, each could have access
to whatever the other can see, regardless of what lies
between.

• NON-UNIVERSAL NAMESPACES. Semantic-Free Refer-
encing [31] stipulates that resources have globally-unique
“semantic-free tags”, high-entropy bit strings perhaps
generated as self-certifying names by the resource provi-
der. A client would use the semantic-free tag rather than
a hostname to identify the website, and a Reference
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Resolution Service (RRS) would map human-readable
names to semantic-free tags. The goal is to decouple the
name of a resource from its content; note that this is
subtly different from thenaming localitygoal of PAN.
The possibility of having multiple different RRS servers
suggests that this approach could lead to a form of local-
ity, since different local regions or classes of organizations
could use different RRS servers to canonicalize human-
readable names. The authors provide little discussion of
how multiple RRS servers could conceivably exist in
practice, or why a single RRS infrastructure similar to
DNS would not emerge, other than to suggest that there
could be a competitive market.

• EMBRACING HETEROGENEITY. Plutarch [7] takes the
leap of considering network fragmentation as the in-
evitable result of political or economic forces rather than
some technical obstacle to be overcome. The authors con-
vincingly argue that avoiding global management would
promote innovation. Like PAN, Plutarch does not require
a well-defined Internet core or global names. Plutarch
“contexts” are similar to the “fragments” that we describe.
However, like IPNL and unlike PAN, Plutarch requires
these contexts to be well-defined and non-overlapping.
Moreover, Plutarch requires special configuration of mid-
dleboxes that serve as the boundaries between contexts.
Plutarch also resolves names via a peer-to-peer search,
which PAN avoids in favor of reducing overhead and
improving connection setup time.

The functionality provided by a directory service is neces-
sary in a wide variey of distributed systems and networks. We
cannot do justice by describing all directory services that have
been proposed in the literature, so we focus on systems that
are widely in use today:

• DNS. The Domain Name Service [17], [18] is the widely
used directory service for resolution of hostnames and
IP addresses in the Internet. DNS names are constructed
and resolved, and updates are propagated across DNS
servers in a hierarchical manner. The PAN forwarder ID
space is flat because forwarders use self-generated, self-
certifying identifiers. This means PAN directory servers
can neither take advantage of the hierarchical approach of
DNS nor can perform aggregation of forwarder identifiers
as they propagate forwarder information through the
directory service. The latter approach is that used by
BGP [25], which aggregates prefix information to reduce
the number of entries BGP has to carry and store. We
explore the design tradeoffs that arise from our approach
in Section IV.

• FILESHARING NETWORKS. Peer-to-peer file sharing sys-
tems dominate Internet traffic today. These systems re-
quire functionality that allows peers to resolve files (or
file attributes) of interest to IP addresses of hosts that
store the files. Some peer-to-peer systems use a central-
ized approach to providing this lookup functionality. For
example, Napster placed the entire index of (filename, IP
address) mappings on a single host. Apart from the po-
tential scalability concerns, this approach assumes clients

can access the centralized index. In PAN, we build our
directory service taking into account that the Internet is
fragmented and not all clients can necessarily reach one
single directory server. Distributed Hash Tables (DHTs)
(such as CAN [21] and Chord [27] distribute this load
across the participating peers. DHTs tightly control both
the placement of mapping on peers and the overlay topol-
ogy which allows the efficient lookup across the overlay
from a querying peer to a peer with the mapping. DHTs
also assume that peers will be able to bidirectionally
communicate with the peers that have been assigned to
be their neighbors barring transient network partitions.
Finally, ‘unstructuredpeer-to-peer file sharing networks,
such as Gnutella3 provide an “ad hoc” directory lookup
service in that lookup queries flood the network in search
of a peer who may have the mapping of interest. PAN is
designed with the goal of minimizing connection setup
latency for clients connecting to arbitrary services. Thus,
clients do not request forwarder information via flooding
because connection set up latency would grow quickly
with population size. In contrast, file-sharing networks,
miminizing the lookup time is not of priority because file
download time dominates lookup time.

• COOPERATIVE WEB CACHING. Various systems been
proposed to allow groups of participating caches to track
what web objects are cached at what proxies and to
exchange cached web content amongst themselves. The
overall goal is to bring a particular web object to the cache
that is closest to the clients requesting that web object.
Previous proposals include hierarchical cache schemes
(e.g., [1], [14], [32], [5]), hash-based schemes [14], [30],
directory-based schemes [9], [16], [28], and multicast-
based schemes (e.g., [29]). All of these schemes assume
that any proxy participating in the a cooperative caching
scheme can communicate bidirectionally with any other
proxy.

III. A RCHITECTURE

PAN consists of a pairwise-connected overlay network of
forwarders, each of which has access to some set of Internet
resources. Some resources may be available to some nodes
but not others. The overlay network that connects all of the
forwarders to each other includes adata planethat carries
tunnelled DNS requests and TCP sessions, as well as acontrol
plane that carries routing information.

There are a number of problems with a distributed approach
to assigning names in a network. For example, two network
components may find themselves with the same name, and
there are performance costs associated with choosing names
that do not inherently carry location information. However,
for the purposes of PAN, it is both possible and beneficial to
sacrifice global agreement abount names without undermining
network integrity and functionality.

To address the concern about uniqueness of names used
to identify forwarders, we allow each forwarder to generate

3Gnutella Protocol Specification, http://www9.limewire.com/
developer/gnutella_protocol_0.4.pdf
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a self-certifying identity (such identities may be mapped to
human-readable nicknames by third-party certification author-
ities). Each forwarder, then, possesses two names: aglobal
name, used to identify itself within the PAN network, and
a local name, used to identify itself within its local names-
pace. By considering that each forwarder provides access to
resources within its own local namespace, we avoid requiring
that all names for all Internet resources be globally unique.

To specifically identify each Internet resource, we concate-
nate the locally meaningful name of the resource with an
identifier specifying the name of the forwarder from which
we want to access that resource. For the purpose of our
implementation, we assume that resources are named by
hostname or IP address, so to access a resource listening on
TCP port80 of 192.168.0.3 as seen by a forwarder named
serifos, we would use192.168.0.3.serifos.exit:80.

A. PAN Directories

A subset of PAN forwarders also serve as directory servers,
so every PAN directory server is also a forwarder. Each
directory server provides a set ofrecords: (a) amaster record,
containing attributes describing itself, (b) a set ofdirectory
records, each containing attributes describing directory peers,
and (c) a set offorwarder records, each containing attributes
describing individual PAN forwarders. The records are pub-
lished via a simple server that responds to queries in the form
of HTTP-GET requests, and these attributes are periodically
pushed to neighboring directories via directory updates in the
form of HTTP-POST requests. Figure 2 illustrates one possible
set of records stored in a directory server given one possible
network of directory servers and standalone forwarders.

1) Master Records:A complete PAN directory server list-
ing includes exactly onemaster record, which contains three
attributes, as follows: aheader consisting of the name of
the directory server and its version, atimestampindicating
when this directory listing was created, and astatus record
identifying each forwarder indexed by the directory including a
bit that indicates whether the directory believes that forwarder
to be active. The bit specifying whether a given forwarder is
reachable is set to true when the directory server receives a
sufficiently recent descriptor for an individual forwarder, and
it is set to false when the descriptor expires.

2) Directory Records:Each PAN directory server publishes
a number of directory records, each containing a set of
attributes that describe a specific peer directory server. A
directory server accrues a set of directory records over time
via directory updates from its neighbors. Unlike peer-to-peer
filesharing services such as Gnutella or BitTorrent, PAN is
designed with the goal of minimizing connection setup latency
for clients connecting to arbitrary services. Thus, clients do
not request forwarder records via broadcasting or heuristic
searches; instead, each directory maintains a set of directory
records, each uniquely corresponding to one of its peers.
Scalability dictates that each individual directory server need
not know everything about the entire network, so there is no
guarantee that each directory server contains a record for each
other directory server in the entire network.

Fig. 2. RECORDS IN PAN DIRECTORIES. Given three directory servers
{A, B,C} and two standalone forwarders{F1, F2} as shown at right, the table
at left illustrates one possible set of records published by directory serverA.

When a client issues a query for a forwarder record, but a
directory server has no corresponding forwarder record, the
directory server may refer the client to a set of directory
servers that have previously indicated knowledge of forwarder
records matching the request of the client. Thisreferral
consists of a set of directory records and the forwarder records
that correspond to the directory servers.

Since directories are not required to explicitly fetch in-
formation on behalf of their clients, a client that queries a
directory for information can expect to be referred to a specific
neighboring directory server. However, such referrals are not
arbitrary: clients seeking a particular forwarder record will be
sequentially referred to some subset of the set of directories
along the reversal of the path by which the advertisement of
the forwarder propagated through the network.

We use ABNF [6] to specify the format of text fields. We
specify self-certifying forwarder names and metadata fields
according to the following formats:

FNAME := 40(ALPHA / DIGIT)

FMETA := *(ALPHA / DIGIT / "-")

Each directory record contains the following attributes:

• SERVICE-DESIGNATION. (required) This field tells a
client how to connect to a directory server, given that the
client has already constructed a circuit to the forwarder
residing on the same machine as the directory server.
In our present implementation, this field is a TCP port
number.Format: *VCHAR

• PROPAGATION-PATH . (required) This field contains an
ordered list of directory servers through which this par-
ticular directory record has propagated before reaching
the directory server upon which it presently resides.
The primary purpose of this field is to avoid cycles in
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the propagation of directory records. The value of this
attribute may be empty, in which case the propagation
path for this particular directory record is presumed to be
the empty list (i.e., the directory server described by this
record is a neighbor of the directory server upon which
this record presently resides).Format: *1FNAME *(","

FNAME)

• SUMMARY. (optional) This field provides a list of
PAN forwarders associated with this particular directory
record, indicating that the corresponding directory offers
to forward traffic to the indicated set of PAN forwarders.
For each forwarder in the list, this attribute also includes
a numeric value indicating the stated number of hops
in the forwarding path leading to that forwarder. Note
that descriptors for the forwarders indicated in this list
may or may not be published at the particular directory
server. See section III-B.1 for details.Format: FNAME

"=" *DIGIT *("," FNAME "=" *DIGIT)

• COMPILED-METADATA . (optional) Propagation of meta-
data is analogous to propagation of individual forwarder
descriptors. Just assummaryattribute provides a list of
forwarder names whose descriptors that might be found
by querying some particular directory server, this field
provides a compiled list of metadata strings that might
be found by querying the specified directory server. In
general, this field is a list of metadata strings representing
the union of all of the metadata strings corresponding to
all of the forwarders that appear in theSummaryfield
of this directory record. Therefore, directory serversmay
issue referrals to clients querying for forwarder records
matching some particular metadata field in the same man-
ner by which theymay issue referrals to clients querying
for specific forwarders by name.Format: FMETA *(","

*FMETA)

3) Forwarder Records:When a PAN forwarder publishes
its descriptor, metadata, and connection information to some
directory server, the directory server in turn creates a forwarder
record using that information. Each forwarder listed in a
directory has exactly one corresponding forwarder record. In
general, forwarder records are updated more frequently and
propagated less widely than directory records; see Section III-
C for details. A directory servermust publish a forwarder
record for itself. Each forwarder record contains some subset
of the following fields:

• FORWARDER DESCRIPTOR. (required) PAN directory
servers providedescriptors that can be used by the
PAN client to establish circuits through the forwarding
network. Descriptors are self-signed statements published
by forwarders that contain contact information, including
IP address and port for accepting circuit-building con-
nections, public key, and salient information about the
capabilities of the forwarder, including exit policy and
bandwidth measurements.

• PROPAGATION-PATH . (required) This field contains an
ordered list of directory servers through which this par-
ticular forwarder record has propagated before reaching
the directory server upon which it presently resides.

The primary purpose of this field is to avoid cycles in
the propagation of forwarder records. The value of this
attribute may be empty, in which case the propagation
path for this particular forwarder record is presumed to
be the empty list (i.e., the forwarder described by this
record published its information directly to the directory
server upon which this record presently resides). Note that
this path is not necessarily the same as that provided by
the Forwarding-Pathattribute.Format: *1FNAME *(","

FNAME)

• FORWARDING-PATH . (required) This field contains an
ordered list of directory servers indicating the circuit
that a client should construct to reach the forwarder
described by this record. Differences between this list
and the list provided byPropagation-Pathattribute arise
in two ways. First, directory servers through which a
forwarder record propagates are not required to add
their names to the forwarding path. Second, the PAN
architecture allows forwarders to publish their descriptors
in directories in locations from which those forwarders
are not directly accessible; to address this, the forwarder
may provide instructions by which clients can reach it
from the perspective of the directory to which it publishes
its information. These instructions appear in the form of
a path, listing a particular sequence of nodes to which
to connect to establish a circuit including the target for-
warder; see Section III-C.2 for details.Format: *1FNAME

*("," FNAME)

• METADATA . (optional) This attribute provides additional
information (e.g. geographic region, network name, con-
nectivity information, access to particular resources, etc.)
describing the forwarder. Since it is not part of the
descriptor (we presume that descriptors have their own
metadata fields), it is not signed by the forwarder with its
private key, and thus it may be modified at the discretion
of the directory servers through which it propagates.
Format: FMETA *("," *FMETA)

B. Client Interaction

Our implementation of PAN leverages the circuit-building
module of Tor [8] to instruct a running Tor process to
build a circuit through the overlay of PAN forwarders. To
see how the various components interact, refer to Figure 3.
The main PAN client process itself does not interact with
client applications directly; instead, it communicates with PAN
directory servers using specially-built Tor circuits, and it uses
descriptors obtained from these conversations to instruct Tor
to build circuits that client applications can use. To take
advantage of PAN, client applications may need to interact
with an application-specific proxy that assures that requests
for network resources are semantically correct. For example,
a proxy for a web browser might rewrite HTTP headers to
excise the PAN forwarder request from the hostname fields.
Similarly, the same proxy might rewrite HTML tags containing
URLs to ensure that all links on a page are accessed via the
same PAN directives when clicked or loaded automatically.

1) Issuing Queries:To establish a path to a specified exit
point, PAN must first determine the path to the exit point and
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Fig. 3. CLIENT PERSPECTIVE. Client applications communicate with PAN
via a series of proxies; PAN consists of software (a program that controls
a running Tor process) as well as a service (the perspective access network
itself).

obtain descriptors for each of the forwarders along that path,
including the last one. Sufficient information necessary to learn
a path to a given destination and all of the requisite descriptors
may be available from the directory server to which the client
speaks directly. Otherwise, the client will need to obtain the
missing information via a series of queries to directory servers.
See Figure 4. Each time that a client queries a directory
serverA and is referred to another directory serverB for more
information, the client extends the circuit used to communicate
with A to B, thus adding a single hop to the circuit.

Fig. 4. ISSUING QUERIES. Suppose that a client application requests a
service as seen by forwarderF2, and the PAN client is configured to use
directory serverA. The client first sends a query toA, who responds with a
referral toB. The client next sends a query toB, who in turn refers it toC.
Finally the client sends a query toC, who has the descriptor. The client then
uses the resulting circuit through{A, B,C} to connect to the target service.

There are two types of queries,specific queriesandgeneral
queries. Specific queriesrequest a path to a particular for-
warder whose name matches a given string, indicating that
the client wants to build a circuit that terminates at some
specific last-hop forwarder.General queriesrequest a path to
a forwarder whoseMetadata field matches some particular
string, indicating that the client wants to build a circuit
that terminates at any last-hop forwarder whose forwarder
record on some directory server matches some criterion. Note
that directories control the content ofMetadatafields within
forwarder records, so, for example, a client issuing a general
query may choose to reject a circuit to a specific forwarder
if its descriptor does not contain a metadata record matching

the original request.
The contract between a directory server and a client issuing

a query is as follows. If a client issues a query, then the
directory servermust respond with one of the following:

• (a) a forwarder record for a forwarder that matches the
query,

• (b) (in the event of a specific query) some set of directory
records and their corresponding forwarder records, such
that each directory record contains either aSummaryfield
containing an element that matches a given forwarder
name,

• (c) (in the event of a general query) some set of directory
records and their corresponding forwarder records, such
that each directory record contains aCompiled-Metadata
field containing an element that matches a given string,
or

• (d) an empty list of records, indicating that the query was
unsuccessful.

Finally, a directory servermay interpret a query asrecur-
sive, meaning just as some DNS servers are configured to
issue DNS requests on behalf of their clients, PAN directory
servers may issue queries on behalf of their clients, provided
that they return results that satisfy the criteria listed above. One
incentive to configure directory servers to perform recursive
queries is that it reduces the amount of work and network
activity on the part of the client.

A client may specify to the directory server that it intends
for its query to be non-recursive, in which case the directory
should honor that request.

Fig. 5. ACCESSING ARESOURCE. After making use of the PAN directory
servers, a client system has a source route suitable for building a circuit
through the set of forwarders to the last-hop forwarder, through which the
client can access the (otherwise occluded) Internet resource.

2) Building Circuits: In our prototype, once it has obtained
forwarder records for the entire path to the last-hop forwarder,
the PAN client will provide the necessary descriptors to Tor
and then ask Tor to build a circuit using those descriptors (see
Figure 5). Once the circuit has been built, PAN will inform
Tor that the TCP stream received from the client application
should be attached to the newly constructed circuit. We have
used our implementation4 to confirm that the set of web pages

4Blossom,http://afs.eecs.harvard.edu/~goodell/blossom/
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accessible from some ISP in China differs from the set of web
pages accessible from some ISP in Boston.

C. Directory Protocol

The directory servers propagate both forwarder records and
directory records to other directory servers throughout the
system. In this manner, any client using any of the directory
servers throughout the system will have a measure of assurance
that it can build a circuit to its requested forwarder, provided
that directory server configuration permitted the propagation
of routing information.

Directory records are stored aslong-term statethat is
assumed to be up-to-date unless aDirectory Updaterequest
from a neigboring directory server is received. Since the mes-
sage volume involved in maintaining synchronicity of routing
information can be expensive, only the changes are pushed
from a directory to its neighbors. When a directory first comes
online, and periodically over a long time interval thereafter,
it requests aburst from each of its neighbors. The burst
contains all of the directory records that the neighbor would
ordinarily provide via regular directory updates, reflecting the
state of knowledge that the requestor would have had if it
had been receiving directory updates since the neighbor first
came online. After receiving the bursts, the requestor applies a
path-selection algorithm to determine the set of records that it
should propagate, and it updates each of its neighbors with this
set of records. Subsequently, the directory will only receive
directory updatesfrom its neighbors when individual records
change. Each time the directory server receives a directory
update that results in a change to its own set of records, that
directory servershould notify its neighbors about the change
within a reasonable period of time.

Conversely, forwarder records are stored asshort-term state
that is periodically refreshed, since forwarder descriptors
change frequently and individual forwarders themselves may
join and leave the network frequently. Individual forwarder
records must be periodically re-issued: if a forwarder record
becomes too old before it is replaced, then directory servers
should discard it.

Periodically, neighbors send empty updates to each other,
even if they have no directory changes to send. Such empty
updates arekeepalivemessages. If a directory has not heard
from one of its neighbors for a sufficiently long period of time,
it concludes that the link to the neighbor has been severed
and responds by issuing awithdrawal message to its peers
indicating that the directory record is no longer available.
Withdrawal messages carry validPropagation-Pathattributes,
and any directory server that currently offers a directory record
whose Propagation-Pathattribute contains the name of a
neighbor from which it received a withdrawal messagemust
either propagate to its neighbors either the withdrawal message
itself or an ordinary directory record with aPropagation-Path
attribute that does not contain the name of the neighbor from
which it received the withdrawal.

1) Directory Propagation:Both directory records and for-
warder records are propagated using a BGP-like path-vector
protocol that includes a simple route selection algorithm

Fig. 6. DIRECTORY PROPAGATION. Each forwarder publishes its forwarder
record to some set of directory servers, and each directory server publishes
its directory record to its neighbors. Directory servers propagate both kinds
of records according to their individually-configured policies.

applied at each directory server. Figure 6 illustrates the process
by which route information is propagated through the network.
Each forwarder advertises its forwarder record to some set
of directory servers, and directory servers propagate the for-
warder record through the network as far as policy permits.
Forwarders that are also directory servers advertise only to
themselves. Each directory server creates a directory record
for each of its neighbor directory servers and propagates the
record through the network. Thus, forwarders push forwarder
records to directory servers, and directory servers push both
forwarder records and directory records to other directory
servers.

Fig. 7. ADVERTISING PAN FORWARDERS. PAN directory servers use a
path-vectoralgorithm to propagate contact information for PAN forwarders.
Black lines indicate the path taken by an advertisement initiated by the
directory server labeledd1. The boxes represent the records stored at the
various directory servers, includingPropagation-PathandSummaryattributes
of directory records.

If a directory server receives two conflicting forwarder
records (e.g., two records with different attributes for the same
forwarder), it chooses the one to propagate based upon the
length of its Forwarding-Pathattribute. If a directory server
receives two conflicting directory records, it chooses the one
to propagate based upon the length of itsPropagation-Path
attribute. Figure 7 provides an overview of how forwarder
information propagates in the general case. The specific con-
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figuration of individual directory servers may cause exceptions
to these rules; Section III-D discusses this in greater depth.

2) Directory Requests:Directories address five different
kinds of requests, all issued using HTTP/1.1 [11]:
• COMPLETE L ISTING. This is a request for the entire

set of records, including its master record, all directory
records, and all forwarder records. The response to this
request can potentially be quite large, but query overhead
for a client could be reduced substantially if most of
the forwarders to which it desires to build circuits have
forwarder records published on the same directory server.
Request Format:

"GET /pan/ HTTP/1.1"

• DIRECTORY BURST. This is a special request sent by a
directory server when it first comes online to bootstrap
its knowledge of the records advertised by each of its
neighbors. A directory server responds to this request by
providing a master record, all of its hard state (i.e. all
directory records), and its own forwarder record.Request
Format:

"GET /pan/burst HTTP/1.1"

• QUERY. This is a query from a client or directory server
for a forwarder record, either explicitly (by name) or
implicitly (by metadata or descriptor-derived data field).
See Section III-B.1 for details.Request Format:

"GET /desc/id/" FNAME SP "HTTP/1.1"

"GET /desc/meta/" FMETA SP "HTTP/1.1"

• PUBLISH FORWARDERRECORD. This is a request from a
forwarder to store a complete forwarder record (possibly
including an explicit forwarding path and metadata).
Request Format:

"POST /pan/ HTTP/1.1"

• DIRECTORY UPDATE. This is a request from a neighbor-
ing directory server to record any updates reflecting any
changes to the directory of that neighbor that occurred
during the last update interval.Request Format:

"POST /pan/directory-update HTTP/1.1"

D. Directory Configuration

A number of parameters govern how individual PAN for-
warders interact with forwarders, clients, and their peers.
These parameters includeneighbor directives, which specify
the set of peers with whom a directory server communicates
directly, ingress directives, which specify preferences for
advertisements received from forwarders and neighbors, and
egress directives, which specify filters for sharing routes with
clients and peers. In this section, we describe the syntax and
practical significance of these parameters.

1) Peering Arrangements:Directories establish peering re-
lationships with each other in a manner similar to how
autonomous systems establish peering relationships with each

Fig. 8. PEERING DIRECTIVES. Suppose that a forwarder publishes to
directory serverA, and directory serverB accepts updates from directory
serverA subject to some particular peering directive. If the peering directive
is FULL or PREPEND, thenB will propagate the forwarder record in addition
to a directory record forA. If the peering directive is SUMMARIZE or PROXY,
thenB will include the name of the forwarder in theSummaryattribute in the
directory record forA. If the peering directive is NONE, thenB will propagate
no information aboutA or the forwarder records propagated fromA. White
pages are forwarder records; gray pages labelledd are directory updates.

other in a BGP context. A special configuration file contains
a list of neighbors along with peering policy and reachability
information in the following format:

"neighbor" SP FNAME SP POLICY SP HOST ":" PORT

The POLICY field represents a peering directive that takes
one of five values (see Figure 8 for an illustration):

• FULL . The directory server propagates both directory
records and forwarder records received from the spec-
ified neighbor, adjusting thePropagation-Pathattribute
of each record by appending the name of the neighbor.
In general, other fieldsmust remain unmodified, though
the directory servermay alter Metadataand Compiled-
Metadataattributes.

• PREPEND. The directory server propagates both directory
records and forwarder records received from the specified
neighbor, adjusting the propagation path by appending the
name of the neighborand alsoadjusting theForwarding-
Path of each forwarder record by appending its own
name. Thus, clients will be instructed to build a circuit
through our node en route to the destination forwarders
propagated via this neighbor. Modification of other fields
is subject to the same conditions that apply to theFull
directive.

• SUMMARIZE . The directory server propagates directory
records received from the specified neighbor, adjusting
the propagation path by appending the name of the
neighbor. However, rather than propagating all forwarder
records from this neighbor, the directory server propa-
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gates only forwarder records corresponding to directory
servers. In addition, the directory server creates aSum-
mary attribute for this neighbor and adds the names of
each forwarder whose forwarder record is received from
this neighbor other than the neighbor itself. The directory
servershould define the numeric value associated with
each forwarder in theSummaryattribute as one plus the
length of theForwarding-Pathattribute from its forwarder
record. Similarly, the directory server creates aCompiled-
Metadataattribute for this neighbor. The directory server
may define this attribute as the union of allMetadata
attributes included in all forwarder records received via
this neighbor except the forwarder record for the neighbor
itself. For each of the new attributes, if it is non-empty,
then the directory server adds it to the directory record
for this neighbor.

• PROXY. The directory server propagates neither directory
records nor forwarder records received from the neighbor.
Instead, the directory server creates a new directory
record for this neighbor, according to the following
specification. TheSummaryfield of the new directory
record must contain the union of all of the names of
all of the forwarders from which the directory server
received forwarder records from this neighborand all
of the names of all of the forwarders appearing in all
Summaryfields included in all directory records received
from the specified neighbor. The directory servershould
set the numeric valued associated with each forwarder
f in the Summaryattribute to d( f ) = 1 + Pf , where
Pf is the length of theForwarding-Path attribute for
any sufficiently recent forwarder record forf received
via the specified neighbor, and the minimum numeric
value associated withf across allSummaryattributes for
all directory records received via the specified neighbor
otherwise. Similarly, theCompiled-Metadatafield of the
new directory recordshould contain the union of all
Metadata attributes included in all forwarder records
received via the specified neighborand each element
of each Compiled-Metadataattribute included in each
directory record received via the specified neighbor. In
this manner, clientsmay be referred to the specified
neighbor when they request a forwarder name or metadata
field that propagated to this directory server via the
specified neighbor.

• NONE. The directory server does not propagate anything
received from this peer. This peering directive specifies
that a directory servershould send periodic directory
updates to this neighbor butshould not make use of any
directory updates that it receives from this neighbor.

If a directory server is configured such that the final field
of someneighbor directive takes the formHOST "." FNAME

".exit:" PORT, then the directory servershould wait for the
specified neighbor to build a persistent circuit to the directory
server before it attempts to establish contact (i.e. request a
burst) with that neighbor.

Refer to Figure 9 for an example of how peering arrange-
ments affect propagated records.

directive records propagated attributes

full dir A, fwd A summary: A1

dir B, fwd B summary: B1

dir C, fwd C

dir D, fwd D

fwd D1

fwd E

prepend dir A, fwd A summary: A1

fwd-path: E

dir B, fwd B summary: B1

fwd-path: E

dir C, fwd C fwd-path: E

dir D, fwd D fwd-path: E

fwd D1 fwd-path: E

fwd E

summarize dir A, fwd A summary: A1

dir B, fwd B summary: B1

dir C, fwd C

dir D, fwd D summary: D1

fwd E

proxy dir C, fwd C summary: A,A1,B,B1

dir D, fwd D summary: D1

fwd E

none fwd E

Fig. 9. PEERING ARRANGEMENTS. Consider the scenario illustrated by the
diagram shown above the table, in which{A, B,C,D,E} are directory servers,
with rectangular boxes indicating the peering directives for the indicated
neighbors and{A1, B1,D1} are standalone forwarders. The table indicates what
records are propagated and what corresponding attributes are defined whenE
applies the indicated peering directives forboth of its neighborsC and D.

2) Ingress Policy:The ingress set of directives provide
additional control over route selection, allowing the owner of
a directory server to stipulate what records to accept from
forwarders and neighbors as well as what preferences to
assign to records based upon their propagation paths and the
neighbors from which they are received. The directives have
the following formats:

"ingress pref" SP FNAME SP [FNAME "*"] SP *DIGIT

"ingress accept" SP [FNAME "*"]

"ingress reject" SP [FNAME "*"]

"ingress dir-accept" SP FNAME SP [FNAME "*"]

"ingress dir-reject" SP FNAME SP [FNAME "*"]

Directory serversshould interpret the configuration direc-
tives as follows:

• INGRESSPREF. This directive takes three arguments. The
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first argument refers to a specific neighbor, and the second
argument refers to the name of a forwarder that might
occur in thePropagation-Pathattribute of a forwarder
record or a directory record. The third argument is the
score assigned to records received from the specified
neighbor, if and only if the second argument is"*"
or the Propagation-Pathattribute includes a forwarder
that matches the second argument. If two neighbors both
propagate either a forwarder record or a directory record
corresponding to the same forwarder, then the route
selection algorithm uses theingress pref directives to
assign scores to both advertisements. The default score
for a route (i.e. if it does not match anyingres pref

directives) is zero. If the scores are unequal, then the route
selection algorithmshouldselect the route with the higher
score. Otherwise, the route selection algorithm considers
length of thePropagation-Pathattribute as described in
Section III-C.1.

• INGRESS{ACCEPT, REJECT}. These directives each take
a single argument. If the argument is"*", then it matches
all forwarders; otherwise, it matches the name of a partic-
ular forwarder exactly. If a particular forwarder attempts
to publish its forwarder record, then the directory server
should accept the record if its name matches aningress

accept line and reject the record if its name matches an
ingress reject line. The default behavior is to accept
all forwarder records for publication.

• INGRESS{DIR-ACCEPT, DIR-REJECT}. These directives
each take two arguments. The first argument refers to a
specific neighbor, and the second argument refers to the
name of a forwarder that might occur in thePropagation-
Path attribute of a forwarder record or a directory record
(or "*", which matches all records received from the
specified neighbor). The directory servershould accept a
record received from the specified neighbor if it matches
an ingress dir-accept directive and reject a record
received from the specified neighbor if it matches an
ingress dir-reject directive. These directives are
considered in advance ofingress pref directives.

In all cases, if multiple directives match the same record,
then only the first match is considered (order has significance).

3) Egress Policy:Theegress set of directives do not affect
local route selection; instead, they determine which routes are
propagated to which peers. The directives take the following
formats:

"egress accept" SP [FNAME "*"] SP [FNAME "*"]

"egress reject" SP [FNAME "*"] SP [FNAME "*"]

Eachegress directive takes two arguments. The first argu-
ment matches the name of a neighbor to which to propagate
a record, and the second argument matches the name of a
forwarder that might occur in thePropagation-Pathattribute
of a directory record or forwarder record. The directory server
should propagate a record received to the specified neighbor if
it matches aningress dir-accept directive andshould not
propagate a record to the specified neighbor if it matches an
ingress dir-reject directive. As withingress directives,

if multiple directives match the same record, then only the first
match is considered (order has significance).

All of the experiments described in the next section have
fully open ingress andegress policy directives.

IV. EVALUATION

To illustrate some of the design tradeoffs inherent to the
PAN directory service, we performed empirical measurements
using a deployment of roughly 300 nodes on PlanetLab. In
our experiments, each of the nodes serves as a forwarder in
the PAN overlay, and some subset of the nodes also serve
as directory servers. We refer to nodes that perform just
forwarding asstandalone forwarders.

For each of our experiments, we assigned forwarders and di-
rectory servers at random from the set of PlanetLab nodes that
we had previously determined to be responsive. Our selection
process assigns forwarder roles randomly, so the topologies
that we chose areconservativein the sense that pairs of nodes
that directly communicate with each other are determined
without regard to the underlying network infrastructure. We
suspect that pairwise communicators in most PAN networks
deployed in practice would be chosen more intelligently.
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Fig. 10. CIRCUIT SETUP LATENCY. Initial TCP connection setup time
increases by an average of 0.8 seconds per hop, and each query issued during
the process of constructing a circuit adds an average of about 0.3 seconds.

A. Circuit Setup Performance

To test setup latency for circuits involving multiple hops
through the forwarding network and the effect of client queries
on TCP connection setup time, we partitioned the nodes into
groups of six and assigned each as a directory server (i.e.
no standalone forwarders). We usedneighbor directives to
arrange each group into a chain of length five. We then
proceeeded to run two tests, as follows:

• GENERIC CIRCUIT-BUILDING TEST. For each group
of six directory servers, we used theprepend peering
directive for all links, directing each directory server to
prepend its name to the forwarding path of each forwarder
record as it propagates. As a result, the node at one end
of the chain has a set of five forwarders to which it can
build circuits, each representing a different path length
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between one and five. We tested the time taken for Tor
to build a circuit for our specified path by requesting
to send TCP traffic to some port on the final node in
the circuit. The line markedsetup in Figure 10 shows
the average TCP connection setup latency using circuits
of various lengths. We are interested in using PAN for
interactive applications, and by comparison, user studies
have shown that users sometimes shift the focus of their
attention after as little as two seconds [23].

• CIRCUIT-BUILDING TEST WITH QUERIES. For each
group of six directory servers, we used theproxy peering
directive for all links, directing each directory server to
not propagate forwarder records but instead require the
client to issue queries to each successive directory server
along the path to the final node in the circuit. As with
the previous test, the circuit that the client builds contains
between one and five hops, but the client now incurs
an additional penalty for spending the round-trip time
necessary to perform the query. The line markedlookups
in Figure 10 shows the average TCP connection setup
latency using circuits of various lengths. In each case,
the number of queries performed is equal to the number
of hops minus one. We observed that the connection
setup time increased, relative to the circuits constructeded
without queries, by an average of about 0.3 seconds per
query.

Fig. 11. DIRECTORY TOPOLOGY. In our experiments, we organize the
directory servers in a symmetric, circular topology in which all directory
servers have the same degreeδ.

N number of nodes (∼ 300)
nf standalone forwarders per directory server
nd number of directory servers
sd size of directory record
ŝd size of forwarder record with summary
sf size of forwarder record (∼ 4 kB)
δ dirserver connectivity
Td directory update interval (∼ 60 s)
T f forwarder fetch interval (∼ 600 s)
Te forwarder record expiration

Fig. 12. CONTROL PLANE TRAFFIC PARAMETERS.

B. Infrastructure Performance

To evaluate the control plane infrastructure, we generated a
number of different topologies by varying a set of parameters;

see Figure 12 for a list of the parameters relevant to our
infrastructure experiments.

We then performed a series of experiments that involve
selecting different combinations of values forTd, nf , and
δ, as well as different peering directives (specifically,full

versussummarize versusproxy). We observed the size and
frequency of messages sent between directories and standalone
forwarders as well as messages sent among directory servers.

In each case, we used a set ofN nodes, selectingnf stan-
dalone forwarders per directory server, leavingnd = dN/nf e.
We organized the standalone forwarders intond groups ofnf ,
such that each forwarder in a group publishes its forwarder
record to the same directory server and each directory server
receives forwarder records from members of one particular
group. Note that as we increase the value ofnf , the number
of directory servers decreases, sinceN is presumed to be
constant.

For each experiment, we organized the set of the directory
servers into a symmetric, circular topology in which each
directory servers has exactlyδ neighbors. Forwarders contact
their assigned directory servers to publish their forwarder
records and download the latest version of the directory every
T f seconds. Directory servers push updates (such as changes
to descriptors, withdrawals for forwarders that have failed) to
other directory servers everyTd seconds.

Our experiments investigate the following questions:
• What effect does the degree of connectivity,δ, have on

the overall amount of traffic on the control plane?
• What effect does the extent of clusteringnf have on the

throughput of control messages sent amongst directory
servers and between directory servers and standalone
forwarders?

• What effect do peering directivessummarize andproxy
have on the overall throughput of control messages?

• What effect does the intervalTd between directory up-
dates have on the transfer rate of control messages
between directory servers?
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The following equation governs the data rater generated by
each directory server in the control plane, measured in bytes
per second:
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r =
nf u

T f
+
δu
Tk

(1)

The first term describes the interaction with standalone
forwarders, and the second term describes the interaction with
neighboring directory servers. The value ofTk is determined
by the extent to which the records held by individual directory
servers have converged. In an ideal situation, the denominator
of the first term would be exactlyTe, though our implemen-
tation makes no effort to achieve this goal. The relationships
between the various interval values are given by the following
expression:

Td ≤ Tk ≤ T f ≤ Te (2)

The value ofu in Equation 1 is determined by the par-
ticular peering directive used, as illustrated by the following
equations:

ufull = ndsd + Nsf (3)

usummarize = nd ŝd + (nd + nf )sf (4)

uproxy = δŝd + nf sf (5)

Figures 13 through 15 depict the approximate outbound data
rate for individual directory servers as observed. The two terms
in Equation 1 refer to the two lines in the figures.

Figure 13 illustrates the effect of varying the frequency of
updates between directory servers. As the duration between
updates increases, the quantity of outbound traffic to other
directory servers decreases in inverse proportion toTd. So,
improving the convergence time for the PAN routing tables
requires a concomitant investment of bandwidth.

Figure 14 illustrates the effect of varying the number of
neighbors to which each directory server is connected. As the
number of neighbors increases, the volume of outbound traffic
to other directory servers increases linearly, since changes
in internal state are propagated to all neighbors. Therefore,
improving the robustness of the system by increasing the
connectivity between nodes also requires an investment in
bandwidth. The figure shows the outcome of an experiment
using thesummarize peering directive, but it is important to
note that if theproxy peering directive were used instead,
then the volume of control plane messages would still increase
proportionally withδ, but circuit setup time would decrease
with δ, since the number of lookups required to discover the
circuit to be created through the overlay would decrease.

Figure 15 illustrates the effect of varying the number of
standalone forwarders that publish their forwarder records to
a given directory server. Since our experiments use a constant
number of nodes, adjusting this parameter changes the ratio of
directory servers to standalone forwarders. Specifically,nf in-
creases whilend decreases. Since we are using thesummarize

peering directive, the volume of traffic between a given direc-
tory server and standalone forwarders increases becausenf

dominates the first term of Equation 1, whereas the volume
of traffic sent to other directory servers decreases becausend

dominates the second term of Equation 1. So, increasing the
number of “leaves” in the topology by decreasing the ratio
of directory servers to standalone forwarders alleviates some
of the traffic in the core of the network but increases traffic
at the edges. Robustness is not necessarily affected, since
forwarders can publish their forwarder records to multiple
directory servers. While we do not show experimental results
for that situation, we assert that directing each standalone
forwarder to publish its forwarder record tomdirectory servers
involves substitutingmnf for nf in Equations 1 through 5.

C. Traffic Profiles

Figures 16 and 17 depict the average outbound traffic
volume per minute for a typical directory server. Figure 16
presents the outbound traffic between a directory server and
its neighbors, given peering rulesummarize and two different
values ofnf . Observe that the traffic volume levels off after
increasing for the first twenty minutes while PlanetLab nodes
come online and routing information converges. Figure 17
shows the average outbound traffic volume per minute to
standalone forwarders. The periodicity is the result of periodic
directory fetches at time intervalT f on the part of standalone
forwarders.

In Figure 18, we show the overall traffic volume of control
messages sent between directory servers and standalone for-
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for traffic from a typical directory server to the forwarders whose forwarder
records are published directly, givennf = 6 andnf = 18. We defineTd = 20,
δ = 8, and peering directivesummarize.

warders using peering rulesproxy andsummarize. Observe
that proxy exhibits signifcantly lower transfer rates because
directory servers need not provide forwarder records for every
directory server in the network. Instead, clients are referred to
successive neighbors at each query in which a forwarder record
is not found. We observe an inherent tradeoff between circuit
performance and traffic volume to standalone forwarders, as
described in Section IV-B. A network designer would consider
this effect in selecting a peering directive.

Finally, Figure 19 presents a summary of how peering
directives affect control plane activity. We conclude that peer-
ing directive full is probably too expensive to justify the
decrease in circuit setup latency for the general case, while
peering directiveproxy reduces control plane traffic quite
substantially, but at a cost to circuit performance that may be
prohibitive. Which peering directive to choose is inevitably a
function of the constraints of the underlying network topology
and the needs of client applications.
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V. CONCLUSION

We have presented the design of a directory service for use
with Perspective Access Networks, including a specification
of the architecture, a discussion of the design tradeoffs, and
an evaluation of the performance using our working imple-
mentation.

Future work includes addressing a number of interesting
technical questions that examine how PAN interoperates with
environments where there is deliberate restriction of access to
resources, such as governments censoring the web sites that
their citizens could otherwise view. In such a scenario, we need
to study how effectively PAN could provide access to blocked
resources despite continual discovery and shutdown of PAN
forwarders that enable this access. Second, we need to design
mechanisms for performing web searches across fragments.
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The locality feature of PAN could be used to improve web
searches in the Internet today as well as in the increasingly
fragmented Internet of the future.

Equally interesting are the policy questions that arise from
having a system like PAN deployed across the Internet. Many
enterprises use end-to-end authentication for some of the
services they provide in their private networks, but there are a
number of popular services that rely upon the assumption that
the only hosts that have access to the service are physically
on the same LAN or have particular network-layer addresses.
Moreover, deployment of PANs in the Internet could threaten
the business models of companies providing or depending on
geolocation services for anti-fraud resolution, digital rights
management, and spam detection. Convincing these parties to
move away from network-layer authentication as the basis for
their security will be an interesting task.

Our design of PAN has been motivated by four main
objectives: (a) to enable perspective sharing across the Internet
by providing universal access to resources, (b) to allow locality
in naming, (c) to demonstrate ease of deployment, and (d) to
promote decentralized management. Our design decision not to
impose a global naming scheme of resources helps us achieve
these objectives but bears the cost of sacrificing aggregation.
Nonetheless, with recent new threats to Internet consistency
(governance disputes, geolocation services, and accidental or
deliberate censorship of resources), it is worth considering
the implications of an Internet without a well-defined core,
consisting of fragments whose names and address spaces are
not ordained hierarchically. Our work in building a Perspective
Access Network is a step in this direction, and our directory
service architecture represents the core of this effort.
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